Abstract

The purpose of this dissertation in practice was to develop and implement a new training program for designers of military intelligence simulation scenarios used to train soldiers. The use of education and design instructional strategies assisted in the ability for designers to gain mastery skills in creating realistic, high-fidelity scenarios that are applied in the training process. The use of simulation scenarios to train adult learners has increased significantly with improvements in technology and its fidelity to engage learners in a realistic way. Despite these advances, the lack of effective design, implementation and analysis of military simulation training programs in the military intelligence community has led to a decrease in simulation utilization, as in the case of the organization examined in this problem of practice. The current training program's increasing difficulties with consistent use by military intelligence simulation scenario designers were discovered in the results of a gap analysis conducted in 2014, prompting this design. This simulation design aimed to examine: (1) a research-based design methodology to match training requirements for the designers, (2) formative assessment of performance and (3) a research-based evaluation framework to determine the effectiveness of the new training program. For the organization's training program, a Simulation-Based Embedded Training (SBET) solution using scenarios was conceived based on research grounded in cognitive theory and instructional design considerations for simulations. As a structured framework for how to design and implement an effective and sustained training program, the educational instructional design model, ADDIE, was used. This model allowed for continual flexibility in each phase to evaluate and implement changes iteratively. The instructional model and its techniques were used with fidelity, specifically for training the designers of the simulation system. Industries will continue to increase the use of simulation as advances in technologies offer more realistic, safe, and complex training environments. A detailed strategy was provided specific to the organization using a research-based instructional approach integrated into program requirements set forth by the government. This proposed solution, supported by research in the application of instructional strategies, is specific to this organization; however, the training program design differs from other high-fidelity military simulator training programs through its use of dispersed training to the simulation scenario designers using realistic scenarios to mimic the tasks that the designers themselves must create. The difference in the solution in this dissertation in practice is: 1) that the simulation scenarios are designed without the help of subject matter experts by using the embedded instructional strategies and 2) the design is to the fidelity of realism required for military intelligence training exercises.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2018

Semester

Spring

Advisor

Hopp, Carolyn

Degree

Doctor of Education (Ed.D.)

College

College of Education and Human Performance

Department

Teaching, Learning, and Leadership

Degree Program

Curriculum and Instruction

Format

application/pdf

Identifier

CFE0006990

URL

http://purl.fcla.edu/fcla/etd/CFE0006990

Language

English

Release Date

May 2018

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Share

COinS