Abstract

Transverse Mode Instabilities (TMIs) stand as a fundamental limitation to power and brightness scaling in laser systems based upon optical fiber technologies. This work comprises experimental and theoretical investigations into fiber laser design that should minimize the effects of Stimulated Thermal Rayleigh Scattering. Theoretical discussions and simulations focus on how fiber parameters affect transverse mode coupling. These include core geometry optimization, pump geometry optimization, in addition to the effects of HOM content and losses on the TMI threshold. Experimentally, a high-power laser facility is commissioned with beam quality diagnostics to quantify the thresholds of the onset of modal interferences and their impacts on beam quality. These diagnostics include high-resolution Fourier Transform Interferometry (FTI) and in-situ power-in-the-bucket measurements. The design and characterization capabilities developed here are crucial to the development of next-generation high-power fiber laser capabilities.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2018

Semester

Spring

Advisor

Richardson, Martin

Degree

Doctor of Philosophy (Ph.D.)

College

College of Optics and Photonics

Department

Optics and Photonics

Degree Program

Optics and Photonics

Format

application/pdf

Identifier

CFE0006980

URL

http://purl.fcla.edu/fcla/etd/CFE0006980

Language

English

Release Date

May 2023

Length of Campus-only Access

5 years

Access Status

Doctoral Dissertation (Open Access)

Share

COinS