Keywords

Independent Component Analysis, fading channels, Orthogonal Frequency Division Multiplexing, Carrier Frequency Offset

Abstract

In wireless communications, frequency-selective fading is a major source of impairment for wireless communications. In this research, a novel Frequency-Domain Independent Component Analysis (ICA-F) approach is proposed to blindly separate and deconvolve signals traveling through frequency-selective, slow fading channels. Compared with existing time-domain approaches, the ICA-F is computationally efficient and possesses fast convergence properties. Simulation results confirm the effectiveness of the proposed ICA-F. Orthogonal Frequency Division Multiplexing (OFDM) systems are widely used in wireless communications nowadays. However, OFDM systems are very sensitive to Carrier Frequency Offset (CFO). Thus, an accurate CFO compensation technique is required in order to achieve acceptable performance. In this dissertation, two novel blind approaches are proposed to estimate and compensate for CFO within the range of half subcarrier spacing: a Maximum Likelihood CFO Correction approach (ML-CFOC), and a high-performance, low-computation Blind CFO Estimator (BCFOE). The Bit Error Rate (BER) improvement of the ML-CFOC is achieved at the expense of a modest increase in the computational requirements without sacrificing the system bandwidth or increasing the hardware complexity. The BCFOE outperforms the existing blind CFO estimator [25, 128], referred to as the YG-CFO estimator, in terms of BER and Mean Square Error (MSE), without increasing the computational complexity, sacrificing the system bandwidth, or increasing the hardware complexity. While both proposed techniques outperform the YG-CFO estimator, the BCFOE is better than the ML-CFOC technique. Extensive simulation results illustrate the performance of the ML-CFOC and BCFOE approaches.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2005

Semester

Fall

Advisor

Mikhael, Wasfy

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Electrical and Computer Engineering

Degree Program

Electrical Engineering

Format

application/pdf

Identifier

CFE0000756

URL

http://purl.fcla.edu/fcla/etd/CFE0000756

Language

English

Release Date

January 2008

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Share

COinS