Abstract

Passive coherent location (PCL) systems use signals of opportunity to perform traditional radar detection, targeting, and tracking functions. Traditionally these signals include FM radio, digital TV, GSM, and GPS because of their availability in most urban environments. A benefit of having an abundance of signals is the ability to choose which of those best meet the desired system intentions. For example, one may want to choose a digital TV signal over an FM radio signal due to its range resolution characteristics. This work presents a novel algorithm for characterizing commercial signals for use in a PCL system. By analyzing each signal's ambiguity function in terms of amplitude, transmitter geometry, range and Doppler resolution, and sidelobe levels, a comparative evaluation can be made to decide which signals are best suited for an intended radar function. In addition, this research shows that multiple signals can be combined in the detection process to increase the probability of detection over that of a single signal. Finally, this research investigates the geometric considerations for PCL systems in terms of bistatic radar geometry. The results show zones of linear and non-linear relationships between time delay, range, and Doppler frequency.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2017

Semester

Summer

Advisor

Jones, W. Linwood

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Electrical Engineering and Computer Engineering

Degree Program

Electrical Engineering

Format

application/pdf

Identifier

CFE0007123

URL

http://purl.fcla.edu/fcla/etd/CFE0007123

Language

English

Release Date

February 2018

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Share

COinS