Abstract
The large volume of crude oil released into the Gulf of Mexico by the Deepwater Horizon (DWH) accident has raised considerable concerns over potential ecosystem impacts. The dispersion of harmful oil components into the ocean waters could pose long term risks to flora and fauna. Due to the complexity of oil contaminated sites, the unambiguous identification and quantitation of environmental pollutants often requires the sequence of high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS). A classic example is the analysis of the sixteen polycyclic aromatic hydrocarbons included in the priority pollutants list of the U.S. Environmental Protection Agency (EPA-PAHs). This dissertation tackles a different aspect of environmental analysis as is focuses on the photoluminescence spectroscopy of polycyclic aromatic sulfur heterocycles (PASHs). Since considering the EPA-PAHs alone can lead to drastic underestimations of potential toxic effects of oil spills, a strong case can be made for including hetero-aromatic compounds in risk assessments of contaminated sites. PASHs exist in an even greater variety of chemical structures than PAHs and, because of the asymmetry imposed by the heteroatom, the number of PASHs isomers is usually large. The existence of numerous isomers of the same molecular weight increases the difficulty of separation and identification by chromatographic methods. This dissertation demonstrates the capability to differentiate individual PASHs isomers of MW 234 g mol-1 via vibrational spectroscopy at liquid nitrogen (77 K) and liquid helium (4.2K) temperatures. Fluorescence and phosphorescence spectra are presented for isomer determination at the parts-per-billion (ng. mL-1) concentration levels. It is demonstrated that the relatively long phosphorescence decays of PASHs facilitate the time discrimination of strong fluorescence. interference from PAHs and methylated-PAHs often present in Normal-Phase HPLC fractions. The spectral and lifetime databases compiled in this dissertation have paved the road to explore the full dimensionality of photoluminescence spectroscopy.
Graduation Date
2017
Semester
Fall
Advisor
Campiglia, Andres
Degree
Doctor of Philosophy (Ph.D.)
College
College of Sciences
Department
Chemistry
Degree Program
Chemistry
Format
application/pdf
Identifier
CFE0007275
URL
http://purl.fcla.edu/fcla/etd/CFE0007275
Language
English
Release Date
6-15-2019
Length of Campus-only Access
1 year
Access Status
Doctoral Dissertation (Open Access)
STARS Citation
Al-Tameemi, Maha, "Time-Resolved Phosphorescence Spectroscopy at Cryogenic Temperatures for the Environmental Analysis of Polycyclic Aromatic Sulfur Heterocycles in Oil Contaminated Sites." (2017). Electronic Theses and Dissertations. 6038.
https://stars.library.ucf.edu/etd/6038