Abstract

Electrochemical hybridization sensors have been explored extensively for analysis of specific nucleic acids. However, commercialization of the platform is hindered by the need for attachment of separate oligonucleotide probes complementary to a RNA or DNA target to an electrode's surface. This dissertation demonstrates that a single probe can be used to analyze several nucleic acid targets of different lengths with high selectivity, low cost and can be regenerated in 30 seconds by a simple water rinse. The universal electrochemical four-way junction (4J)-forming (UE4J) sensor consists of a universal DNA stem-loop (USL) probe attached to the electrode's surface and two adaptor strands (m and f) which hybridize to the USL probe and the analyte to form a 4J structure. The UE4J sensor enables a high selectivity by recognition of a single base substitution, even at room temperature. The sensor was monitored with voltammetry and electrochemical impedance spectroscopy using different redox labeling strategies and optimized using synthetic nucleic acid sequences. After the sensor was optimized and fully characterized, it was modified for the detection of the Zika virus. The UE4J sensor presented here opens a venue for a re-useable universal platform that can be adopted at low cost for the analysis of potentially any DNA or RNA targets.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2017

Semester

Fall

Advisor

Chumbimuni Torres, Karin

Degree

Doctor of Philosophy (Ph.D.)

College

College of Sciences

Department

Chemistry

Degree Program

Chemistry

Format

application/pdf

Identifier

CFE0007290

URL

http://purl.fcla.edu/fcla/etd/CFE0007290

Language

English

Release Date

June 2018

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Included in

Chemistry Commons

Share

COinS