Abstract

The main goal of this dissertation is to have better understanding of design and operation of the Continuous Flow Intersection (CFI) and Diverging Diamond Interchange (DDI) - as well as numerous factors that affect signalized intersection and interchange performance due to increased left-turn demand. The dissertation attempts to assess the need and justification to redesign intersections and interchanges to improve their efficiency. And to that end, an extensive literature review of existing studies was done with the prime aim of perceiving the principles of these innovative designs and determining the methodology to-be-followed, in order to reach the study's core. Accordingly, several DDI and CFI locations were selected as candidate locations, where the designs have already been implemented and the required data - to model calibration and validation - was collected. The micro-simulation software (VISSIM 8.0) was used for simulation, calibration and validation of the existing conditions - through several steps - including signal optimization and driving behavior parameter sensitivity analysis. Subsequently, an experiment was conceived for each design, aiming at examining several factors that affect each design's efficiency. The experiment comprised 180 and 90 different CFI & DDI scenarios and their conventional designs, respectively. Two measures of effectiveness were identified for result analysis: the average delay and capacity. Result analyses were performed to detect switching thresholds (from conventional to innovative designs. In addition, performance comparison studies of the CFI and DDI with their conventional designs were performed. The results and findings will serve as guidelines for decision-makers as to when they should consider switching from conventional to innovative design. Finally, decision support systems were developed to speed up the search for the superior design, in comparison with others.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2017

Semester

Fall

Advisor

Radwan, Essam

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Civil, Environmental, and Construction Engineering

Degree Program

Civil Engineering

Format

application/pdf

Identifier

CFE0007276

URL

http://purl.fcla.edu/fcla/etd/CFE0007276

Language

English

Release Date

June 2018

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Share

COinS