Abstract
Artificial social intelligence is a step towards human-like human-computer interaction. One important milestone towards building socially intelligent systems is enabling computers with the ability to process and interpret the social signals of humans in the real world. Social signals include a wide range of emotional responses from a simple smile to expressions of complex affects. This dissertation revolves around computational models for social signal processing in the wild, using multimodal signals with an emphasis on the visual modality. We primarily focus on complex affect recognition with a strong interest in curiosity. In this dissertation,we ?rst present our collected dataset, EmoReact. We provide detailed multimodal behavior analysis across audio-visual signals and present unimodal and multimodal classi?cation models for affect recognition. Second, we present a deep multimodal fusion algorithm to fuse information from visual, acoustic and verbal channels to achieve a uni?ed classi?cation result. Third, we present a novel system to synthesize, recognize and localize facial occlusions. The proposed framework is based on a three-stage process: 1) Synthesis of naturalistic occluded faces, which include hand over face occlusions as well as other common occlusions such as hair bangs, scarf, hat, etc. 2) Recognition of occluded faces and differentiating between hand over face and other types of facial occlusions. 3) Localization of facial occlusions and identifying the occluded facial regions. Region of facial occlusion, plays an important role in recognizing affect and a shift in location can result in a very different interpretation, e.g., hand over chin can indicate contemplation, while hand over eyes may show frustration or sadness. Finally, we show the importance of considering facial occlusion type and region in affect recognition through achieving promising results in our experiments.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2017
Semester
Fall
Advisor
Hughes, Charles
Degree
Doctor of Philosophy (Ph.D.)
College
College of Engineering and Computer Science
Department
Computer Science
Degree Program
Computer Science
Format
application/pdf
Identifier
CFE0007291
URL
http://purl.fcla.edu/fcla/etd/CFE0007291
Language
English
Release Date
June 2023
Length of Campus-only Access
5 years
Access Status
Doctoral Dissertation (Open Access)
STARS Citation
Nojavanasghari, Behnaz, "Complex Affect Recognition in the Wild" (2017). Electronic Theses and Dissertations. 6051.
https://stars.library.ucf.edu/etd/6051