Abstract

Nanofiltration (NF) is a pressure driven membrane process employed in drinking water treatment that requires pretreatment for reliable operation. The objective of this research was to determine if NF membranes can proficiently operate with a decreased or eliminated dose of sulfuric acid pretreatment. When used as pretreatment, sulfuric acid prevents calcium carbonate scaling on NF membranes, yet is costly, hazardous, and imparts high sulfate concentrations to NF feed and concentrate streams. To conduct this research, a 0.324 million gallon per day (MGD) NF pilot plant was operated for 3,855 run-hours at a flux rate of 15 gallons per square foot-day. The NF pilot unit's process performance, productivity, and water quality were monitored while the sulfuric acid dose was gradually decreased, controlled by monitoring pH that ranged from pH 6.5 (80 mg/L sulfuric acid dose) to pH 7.0 (no sulfuric acid dose). NF pilot productivity, as measured by specific flux, was found to decline when sulfuric acid was eliminated by 2.33 percent, 9.61 percent, and 4.08 percent in the first stage, second stage, and total pilot system, respectively, with no distinguishable increase in pressure drop. Noticeable water quality trends include approximately 75 percent sulfate decrease in feed and concentrate streams, and 20 percent increase of calcium hardness and alkalinity in the permeate stream. After piloting, superimposed elemental imaging analysis revealed that the second stage, tail-end membrane surface was fouled with iron disulfide, calcium carbonate, clay, and natural organic matter. However, flux recovered to normal operating conditions after a membrane cleaning was performed. Results of the pilot study indicated that sulfuric acid could be eliminated from the full-scale NF pretreatment process; however, membrane cleaning frequencies could increase. If applied to the full-scale NF process, elimination of sulfuric acid pretreatment would reduce annual chemical costs by over $70,000.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2017

Semester

Fall

Advisor

Duranceau, Steven

Degree

Master of Science in Environmental Engineering (M.S.Env.E.)

College

College of Engineering and Computer Science

Department

Civil, Environmental, and Construction Engineering

Degree Program

Environmental Engineering

Format

application/pdf

Identifier

CFE0007287

URL

http://purl.fcla.edu/fcla/etd/CFE0007287

Language

English

Release Date

June 2018

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Share

COinS