Abstract
Magnetic materials are currently being developed in the areas of pharmacology and medicinal chemistry for use in applications such as drug delivery and magnetic resonance imaging. Magnetic fluids are being used in audio equipment and hard disk drives. Their suspension in a particular fluid is promoted by the adsorption or reaction of steric or electrostatic stabilizers, which are appropriate for the particular medium. Critical to the success of these magnetic fluids is the development of the steric stabilizers, which must prevent the coagulation of the metal particles. Polymeric materials are one of the most suitable nonmagnetic media to disperse the magnetic nanoparticles, forming polymeric nanocomposites in ferrofluids. We have developed strategies in molecular nanoscience to design polymeric systems for stabilization of magnetic nanoparticles. Ring opening metathesis polymerization (ROMP) was used to prepare a series of novel, well-defined diblock copolymers of bicyclo[2.2.1]hept-5-ene 2-carboxylic acid 2-cyanoethyl ester and bicyclo[2.2.1]hept-2-ene, consisting of both anchoring and steric stabilizing blocks. Both ester and cyano groups were incorporated into the polymers to chelate and stabilize the iron oxide magnetic nanoparticles. These polynorbornene-based copolymers were characterized by GPC, along with 1H NMR, FTIR, DSC, and TGA. Using diblock copolymers as stabilizers, nanostructured maghemite (γ-Fe2O3) magnetic ferrofluids were prepared in toluene or cyclohexanone via thermal decomposition of Fe(CO)5 and then the oxidation of iron nanoparticles. Transmission electron microscopic (TEM) images showed a highly crystalline structure of the γ-Fe2O3 nanoparticles, with average particle size varying from 5 to 7 nm. Polymer films containing iron oxide nanoclusters were also prepared from the diblock copolymers. For comparison, a commercial triblock copolymer (BASF PluronicR F127) surfactant was used to prepare stabilized ferrofluids. In addition to γ-Fe2O3 nanoparticles, other types of magnetic nanoparticles, such as FePt, were investigated using this triblock copolymer as a stabilizer. The results indicated that the norbornene diblock copolymers could also be used for the preparation of FePt stabilized magnetic ferrofluids in the future research work.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2004
Semester
Fall
Advisor
Belfield, Kevin D.
Degree
Master of Science (M.S.)
College
College of Arts and Sciences
Department
Chemistry
Format
application/pdf
Identifier
CFE0000230
URL
http://purl.fcla.edu/fcla/etd/CFE0000230
Language
English
Release Date
October 2018
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
STARS Citation
Zhang, Li, "Block Copolymer Stabilized Self-Assembled Magnetic Nanoparticles" (2004). Electronic Theses and Dissertations. 6107.
https://stars.library.ucf.edu/etd/6107