Abstract

The high heat transfer capabilities of impinging jets have led to their widespread use in industrial applications, such as gas turbine cooling. These impinging jets are usually manufactured on the walls of super-alloy metals and are influenced by being positioned with a confined setting. Studies have been shown to enhance the heat transfer of impinging jets by fluctuating the flow which will be analyzed in this project with two designs. The first design is a self-sustaining stationary fluidic oscillator that causes a sweeping motion jet to impinge on the surface. This is investigated using Particle Image Velocimetry (PIV) to study the flow field as well as copper- block heated surface to study the heat transfer. The second design involves pulsating the jet through a rotating disk that opens and closes the jet hole, providing a pulsing impingement on the surface. This is examined using hot-wire anemometry for understanding the fluid mechanics and copper-block heated surface to study the heat transfer. Both configurations are tested at a constant Reynolds number of 30,000 with the oscillator tested at normalized jet-to-surface spacings of 3, 4, 6 and the pulsing mechanism tested at jet-to-surface spacing of 3. The results for the fluidic oscillator indicate: Reynolds stress profiles of the jet demonstrated elevated levels of mixing for the fluidic oscillator; heat transfer enhancement was seen in some cases; a confined jet does worse than an unconfined case; and the oscillator's heat removal performed best at lower jet-to- surface spacings. The results for the pulsing mechanism indicate: lower frequencies displayed high turbulence right at the exit of the jet as well as the jet-to-surface spacing of 3; the duty cycle parameter strongly influences the heat transfer results; and heat transfer enhancement was seen for a variation of frequencies.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2018

Semester

Fall

Advisor

Kapat, Jayanta

Degree

Master of Science in Mechanical Engineering (M.S.M.E.)

College

College of Engineering and Computer Science

Department

Mechanical and Aerospace Engineering

Degree Program

Mechanical Engineering; Thermo-Fluids Track

Format

application/pdf

Identifier

CFE0007353

URL

http://purl.fcla.edu/fcla/etd/CFE0007353

Language

English

Release Date

December 2018

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Share

COinS