Abstract

Recycled concrete aggregate (RCA) is a sustainable construction material that is a viable option for use in drainage systems by replacing virgin aggregate. Replacing virgin aggregate with RCA is beneficial from both economic and environmental perspectives. However, the use of RCA as pipe backfill materials may cause a long-term performance issue such as potential clogging due to fines accumulation and calcite precipitation on filter fabric. Previous studies investigated the long-term performance of RCA regarding flow rate. Therefore, this study investigated calcite precipitation potential of RCA. The Accelerated Calcite Precipitation (ACP) procedure was devised and used to estimate "life-time" calcite precipitation of RCA for French Drains. The ACP procedure was studied further and improved to optimize the calcite precipitation procedure. The enhanced method was used to compare the calcite precipitation of limestone and RCA samples - sources with varying chemistry and history. Key findings are (1) the clogging due to calcite precipitation of RCA is not as significant as clogging due to the existing and/or accumulated fines, (2) the calcite precipitation can be increased with a temperature of 75°C and 17-hour heating time, and (3) the potential for calcite precipitation from RCA is not as significant as limestone for Type I underdrain gradation.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2018

Semester

Fall

Advisor

Nam, Boo Hyun

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Civil, Environmental, and Construction Engineering

Degree Program

Environmental Engineering

Format

application/pdf

Identifier

CFE0007321

URL

http://purl.fcla.edu/fcla/etd/CFE0007321

Language

English

Release Date

December 2019

Length of Campus-only Access

1 year

Access Status

Doctoral Dissertation (Open Access)

Share

COinS