Abstract

Metabolic power and cost of transport (COT) are common quantifiers for effort when performing tasks including walking and running. Most studies focus on using a range of normal walking speeds over level ground or varied slopes. However, these studies use fixed-speed conditions. Fatigue, stability, metabolic expenditure, heart rate, and many other factors contribute to normal walking speed varying over time. This study aimed to show that allowing a subject to walk with a self-paced speed should correlate to a minimum COT at a given slope. This study also aimed to determine if a preferred slope exists based on minimizing metabolic expenditure or maximizing stability. In this study, subjects walked at four different speed conditions including three fixed speeds (0.75 m/s, 1.0 m/s, 1.25 m/s) and their self-paced speed at five different slopes (-6°, -3°, 0°, 3°, 6°) while metabolic energy expenditure and motion were recorded. The minimum COT occurred at a 3° decline. At this slope, some subjects preferred to walk at a faster speed compared to level ground, whereas other subjects walked with a slower speed compared to level ground. Thus, there was a greater range of self-paced speeds, from 0.745 m/s-2.045 m/s. In comparison, at a 6° incline, the range of self-paced speeds was much smaller, from 0.767 m/s-1.434 m/s. The variance among self-paced speeds and slope conditions between subjects suggests that COT, alone, does not explain walking decisions; stability might play a greater role than initially believed. These results provide greater insight into why humans choose to walk at a certain speed over a range of slopes and terrains.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2019

Semester

Spring

Advisor

Huang, Helen

Degree

Master of Science (M.S.)

College

College of Engineering and Computer Science

Department

Mechanical and Aerospace Engineering

Degree Program

Biomedical Engineering; Biomedical Engineering Biomechanics

Format

application/pdf

Identifier

CFE0007515

URL

http://purl.fcla.edu/fcla/etd/CFE0007515

Language

English

Release Date

May 2019

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Share

COinS