Abstract
In this research we built a custom experimental range using opensource emulated and custom pure honeypots designed to detect or capture attacker activity. The focus is to test the effectiveness of a deception in its ability to evade detection coupled with attacker skill levels. The range consists of three zones accessible via virtual private networking. The first zone houses varying configurations of opensource emulated honeypots, custom built pure honeypots, and real SSH servers. The second zone acts as a point of presence for attackers. The third zone is for administration and monitoring. Using the range, both a control and participant-based experiment were conducted. We conducted control experiments to baseline and empirically explore honeypot detectability amongst other systems through adversarial testing. We executed a series of tests such as network service sweep, enumeration scanning, and finally manual execution. We also selected participants to serve as cyber attackers against the experiment range of varying skills having unique tactics, techniques and procedures in attempting to detect the honeypots. We have concluded the experiments and performed data analysis. We measure the anticipated threat by presenting the Attacker Bias Perception Profile model. Using this model, each participant is ranked based on their overall threat classification and impact. This model is applied to the results of the participants which helps align the threat to likelihood and impact of a honeypot being detected. The results indicate the pure honeypots are significantly difficult to detect. Emulated honeypots are grouped in different categories based on the detection and skills of the attackers. We developed a framework abstracting the deceptive process, the interaction with system elements, the use of intelligence, and the relationship with attackers. The framework is illustrated by our experiment case studies and the attacker actions, the effects on the system, and impact to the success.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2019
Semester
Spring
Advisor
Guha, Ratan
Degree
Doctor of Philosophy (Ph.D.)
College
College of Engineering and Computer Science
Department
Computer Science
Degree Program
Computer Science
Format
application/pdf
Identifier
CFE0007467
URL
http://purl.fcla.edu/fcla/etd/CFE0007467
Language
English
Release Date
May 2019
Length of Campus-only Access
None
Access Status
Doctoral Dissertation (Open Access)
STARS Citation
Hassan, Sharif, "Framework For Modeling Attacker Capabilities with Deception" (2019). Electronic Theses and Dissertations. 6293.
https://stars.library.ucf.edu/etd/6293