Abstract
Educational Data Mining (EDM) is a developing research field that involves many techniques to explore data relating to educational background. EDM can analyze and resolve educational data with computational methods to address educational questions. Similar to EDM, neural networks have been utilized in widespread and successful data mining applications. In this paper, synthetic datasets are employed since this paper aims to explore the methodologies such as decision tree classifiers and neural networks to predict student performance in the context of EDM. Firstly, it introduces EDM and some relative works that have been accomplished previously in this field along with their datasets and computational results. Then, it demonstrates how the synthetic student dataset is generated, analyzes some input attributes from the dataset such as gender and high school GPA, and delivers with some visualization results to determine which classification methods approaches are the most efficient. After testing the data with decision tree classifiers and neural networks methodologies, it concludes the effectiveness of both approaches in terms of the model evaluation performance as well as discussing some of the most promising future work of this research.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2019
Semester
Spring
Advisor
Jha, Sumit Kumar
Degree
Master of Science (M.S.)
College
College of Engineering and Computer Science
Department
Computer Science
Degree Program
Computer Science
Format
application/pdf
Identifier
CFE0007455
URL
http://purl.fcla.edu/fcla/etd/CFE0007455
Language
English
Release Date
May 2019
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
STARS Citation
Feng, Junshuai, "Predicting Students' Academic Performance with Decision Tree and Neural Network" (2019). Electronic Theses and Dissertations. 6301.
https://stars.library.ucf.edu/etd/6301