Abstract

Salt marshes are valued for providing protective and non-protective ecosystem services. Accurate digital elevation models (DEMs) in salt marshes are crucial for modeling storm surges and determining the initial DEM elevations for modelling marsh evolution. Due to high biomass density, lidar DEMs in coastal wetlands are seldom reliable. In an aim to reduce lidar-derived DEM error, several multilinear regression and random forest models were developed and tested to estimate biomass density in the salt marshes near Saint Marks Lighthouse in Crawfordville, Florida. Between summer of 2017 and spring of 2018, two field trips were conducted to acquire true elevation and biomass density measures. Lidar point cloud data were combined with vegetation monitoring imagery acquired from Sentinel-2 and Landsat Thematic Mapper (LTM) satellites, and 64 field biomass density samples were used as target variables for developing the models. Biomass density classes were assigned to each biomass sample using a quartile approach. Moreover, 346 in-situ elevation measures were used to calculate the lidar DEM errors. The best model was then used to estimate biomass densities at all 346 locations. Finally, an adjusted DEM was produced by deducting the quartile-based adjustment values from the original lidar DEM. A random forest regression model achieved the highest pseudo R2 value of 0.94 for predicting biomass density in g/m2. The adjusted DEM based on the estimated biomass densities reduced the root mean squared error of the original DEM from 0.38 m to 0.18 m while decreasing the raw mean error from 0.33 m to 0.14 m, improving both measures by 54% and 58%, respectively.

Graduation Date

2019

Semester

Summer

Advisor

Medeiros, Stephen

Degree

Master of Science (M.S.)

College

College of Engineering and Computer Science

Department

Civil, Environmental, and Construction Engineering

Degree Program

Civil Engineering; Water Resources Engineering

Format

application/pdf

Identifier

CFE0007594

URL

http://purl.fcla.edu/fcla/etd/CFE0007594

Language

English

Release Date

8-15-2019

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Share

COinS