Abstract
The field of integrated photonics aims at compressing large and environmentally-sensitive optical systems to micron-sized circuits that can be mass-produced through existing semiconductor fabrication facilities. The integration of optical components on single chips is pivotal to the realization of miniature systems with high degree of complexity. Such novel photonic chips find abundant applications in optical communication, spectroscopy and signal processing. This work concentrates on harnessing nonlinear phenomena to this avail. The first part of this dissertation discusses, both from component and system level, the development of a frequency comb source with a semiconductor mode-locked laser at its heart. New nonlinear devices for supercontinuum and second-harmonic generations are developed and their performance is assessed inside the system. Theoretical analysis of a hybrid approach with synchronously-pumped Kerr cavity is also provided. The second part of the dissertation investigates stimulated Brillouin scattering (SBS) in integrated photonics. A fully-tensorial open-source numerical tool is developed to study SBS in optical waveguides composed of crystalline materials, particularly silicon. SBS is demonstrated in an all-silicon optical platform.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2019
Semester
Summer
Advisor
Fathpour, Sasan
Degree
Doctor of Philosophy (Ph.D.)
College
College of Optics and Photonics
Department
Optics and Photonics
Degree Program
Optics and Photonics
Format
application/pdf
Identifier
CFE0007674
URL
http://purl.fcla.edu/fcla/etd/CFE0007674
Language
English
Release Date
August 2019
Length of Campus-only Access
None
Access Status
Doctoral Dissertation (Open Access)
STARS Citation
Malinowski, Marcin, "Third-order Optical Nonlinearities for Integrated Microwave Photonics Applications" (2019). Electronic Theses and Dissertations. 6526.
https://stars.library.ucf.edu/etd/6526