Keywords

Surface acoustic wave; wireless sensors; rfid

Abstract

Wireless surface acoustic wave (SAW) sensors offer unique advantages over other sensor technologies because of their inherent ability to operate in harsh environments and completely passive operation, providing a reliable, maintenance-free life cycle. For certain SAW sensor applications the challenge is building a wirelessly interrogatable device with the same lifetime as the SAW substrate. The design of these application intensive sensors is complicated by the degradation of device bond wires, die adhesive, and antenna substrate. In an effort to maximize the benefits of the platform, this dissertation demonstrates wafer-level integrated SAW sensors that directly connect the thin film SAW to a thick film on-wafer antenna. Fully integrated device embodiments are presented that operate over a wide range of temperatures using different fabrication techniques, substrates, and coding principles.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2015

Semester

Summer

Advisor

Malocha, Donald C.

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Electrical Engineering and Computer Science

Degree Program

Engineering and Computer Science

Format

application/pdf

Identifier

CFE0005795

URL

http://purl.fcla.edu/fcla/etd/CFE0005795

Language

English

Release Date

August 2015

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Subjects

Dissertations, Academic -- Engineering and Computer Science; Engineering and Computer Science -- Dissertations, Academic

Included in

Engineering Commons

Share

COinS