Abstract
Photographing small objects with a quadcopter is non-trivial to perform with many common user interfaces, especially when it requires maneuvering an Unmanned Aerial Vehicle (C) to difficult angles in order to shoot high perspectives. The aim of this research is to employ machine learning to support better user interfaces for quadcopter photography. Human Robot Interaction (HRI) is supported by visual servoing, a specialized vision system for real-time object detection, and control policies acquired through reinforcement learning (RL). Two investigations of guided autonomy were conducted. In the first, the user directed the quadcopter with a sketch based interface, and periods of user direction were interspersed with periods of autonomous flight. In the second, the user directs the quadcopter by taking a single photo with a handheld mobile device, and the quadcopter autonomously flies to the requested vantage point. This dissertation focuses on the following problems: 1) evaluating different user interface paradigms for dynamic photography in a GPS-denied environment; 2) learning better Convolutional Neural Network (CNN) object detection models to assure a higher precision in detecting human subjects than the currently available state-of-the-art fast models; 3) transferring learning from the Gazebo simulation into the real world; 4) learning robust control policies using deep reinforcement learning to maneuver the quadcopter to multiple shooting positions with minimal human interaction.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2019
Semester
Fall
Advisor
Sukthankar, Gita
Degree
Doctor of Philosophy (Ph.D.)
College
College of Engineering and Computer Science
Department
Electrical and Computer Engineering
Degree Program
Computer Engineering
Format
application/pdf
Identifier
CFE0007774
URL
http://purl.fcla.edu/fcla/etd/CFE0007774
Language
English
Release Date
December 2019
Length of Campus-only Access
None
Access Status
Doctoral Dissertation (Open Access)
STARS Citation
Alabachi, Saif, "Guided Autonomy for Quadcopter Photography" (2019). Electronic Theses and Dissertations. 6708.
https://stars.library.ucf.edu/etd/6708