Keywords

Hot mix asphalt; sustainable material; life cycle assessment; life cycle cost analysis

Abstract

The demand for pollution-free and recyclable engineering materials has been increased as the cost of energy and environmental concerns have risen. Green material design can lead to better environmental quality and sustainability of civil infrastructure. Road construction is one of the largest consumers of natural resources. Beneficial utilization of recycled materials can result in an important opportunity to save the mining and use of virgin materials, to preserve energy, and to save landfill space. Two main research questions addressed in this study are: (1) How much pollution, energy, natural resources, time and money can be salvaged by applying recycling materials to Hot-Mix Asphalt (HMA)?, (2) What are the optimum mix designs for those recycled materials in HMA?, and (3) Can multiple recycled materials be used at the same time to compensate each other*s drawbacks? This study evaluates the structural performance and environmental-economical cost and benefit by substituting one or a combination of three recycled materials in HMA. The three recycled materials are Recycled Asphalt Shingle (RAS), Municipal Solid Waste Incineration (MSWI) Bottom Ash, and Recycled Concrete Aggregate (RCA). Performance evaluation of the HMA including those recycled materials has been performed by a series of laboratory experimental tests while the environmental impact was investigated by the Life Cycle Assessment (LCA). In addition, Life Cycle Cost Analysis (LCCA) method has been employed to evaluate the benefit of the aforementioned recycled materials. In 2008, the Florida Legislature established a new statewide recycling goal of 75% to be achieved by the year 2020. The impact of this research aligns with this policy as it introduces a sustainable HMA that reduces the necessity of virgin aggregate and asphalt binder to 50% and 20%, respectively. In terms of environmental and economic impacts, in comparison with the regular HMA, it generates 25% less greenhouse gas emission, and for a period of 20 years, the cost of construction and maintenance would be 65% less.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2015

Semester

Summer

Advisor

Nam, Boo Hyun

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Civil, Environmental, and Construction Engineering

Degree Program

Engineering and Computer Science

Format

application/pdf

Identifier

CFE0005798

URL

http://purl.fcla.edu/fcla/etd/CFE0005798

Language

English

Release Date

August 2015

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Subjects

Dissertations, Academic -- Engineering and Computer Science; Engineering and Computer Science -- Dissertations, Academic

Share

COinS