Abstract

A Surface Acoustic Wave (SAW) correlator built on a Lithium Niobate substrate is temperature compensated in order to maintain a constant center frequency. Frequency shifts as a result of temperature variations limit device performance. An Arduino®-based PWM temperature controller is developed to read the device temperature from a resistance temperature detector located on the SAW wafer and to regulate its temperature to a specified setpoint by providing current to a heater which is co-located with the temperature sensor on the SAW correlator substrate. The final temperature controller achieves frequency shifts of 0.013 MHz from room temperature with a worst-case PPM experienced over 30°C of temperature variation of 0.48 PPM°C. Linear and non-linear plant models are developed successfully to predict the device's temperature based on any input setpoint. Although there are alternatives to limit temperature drift at different temperatures, this thesis presents a simple method that works on a standard Lithium Niobate substrate.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2019

Semester

Fall

Advisor

Weeks, Arthur

Degree

Master of Science in Electrical Engineering (M.S.E.E.)

College

College of Engineering and Computer Science

Department

Electrical and Computer Engineering

Degree Program

Electrical Engineering

Format

application/pdf

Identifier

CFE0007787

URL

http://purl.fcla.edu/fcla/etd/CFE0007787

Language

English

Release Date

12-15-2019

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Share

COinS