Abstract

Conventionally, physics-based models are used for power system state estimation, including Weighted Least Square (WLS) or Weighted Absolute Value (WLAV). These models typically consider a single snapshot of the system without capturing temporal correlations of system states. In this thesis, a Physics-Guided Deep Learning (PGDL) method incorporating the physical power system model with the deep learning is proposed to improve the performance of power system state estimation. Specifically, inspired by Autoencoders, deep neural networks (DNNs) are utilized to learn the temporal correlations of power system states. The estimated system states are checked against the physics law by a set of power flow equations. Hence, the proposed PGDL approach is both data-driven and physics-based. The proposed method is compared with the traditional methods on the basis of accuracy and robustness in IEEE standard cases. The results indicate that PGDL framework provides more accurate and robust estimation for power system state estimation.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2019

Semester

Fall

Advisor

Zhou, Qun

Degree

Master of Science in Electrical Engineering (M.S.E.E.)

College

College of Engineering and Computer Science

Department

Electrical and Computer Engineering

Degree Program

Electrical Engineering

Format

application/pdf

Identifier

CFE0007871

URL

http://purl.fcla.edu/fcla/etd/CFE0007871

Language

English

Release Date

12-15-2019

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Share

COinS