Abstract
In this dissertation, we consider an application of overcomplete dictionaries to the solution of general ill-posed linear inverse problems. In the context of regression problems, there has been an enormous amount of effort to recover an unknown function using such dictionaries. While some research on the subject has been already carried out, there are still many gaps to address. In particular, one of the most popular methods, lasso, and its variants, is based on minimizing the empirical likelihood and unfortunately, requires stringent assumptions on the dictionary, the so-called, compatibility conditions. Though compatibility conditions are hard to satisfy, it is well known that this can be accomplished by using random dictionaries. In the first part of the dissertation, we show how one can apply random dictionaries to the solution of ill-posed linear inverse problems with Gaussian noise. We put a theoretical foundation under the suggested methodology and study its performance via simulations and real-data example. In the second part of the dissertation, we investigate the application of lasso to the linear ill-posed problems with non-Gaussian noise. We have developed a theoretical background for the application of lasso to such problems and studied its performance via simulations.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2019
Semester
Fall
Advisor
Pensky, Marianna
Degree
Doctor of Philosophy (Ph.D.)
College
College of Sciences
Department
Mathematics
Degree Program
Mathematics
Format
application/pdf
Identifier
CFE0007811
URL
http://purl.fcla.edu/fcla/etd/CFE0007811
Language
English
Release Date
December 2019
Length of Campus-only Access
None
Access Status
Doctoral Dissertation (Open Access)
STARS Citation
Gupta, Pawan, "Solution of Linear Ill-posed Problems Using Overcomplete Dictionaries" (2019). Electronic Theses and Dissertations. 6747.
https://stars.library.ucf.edu/etd/6747