Abstract
The right-turn flashing yellow arrow (FYA) signal phasing is a new signal practice in the United States. The Manual on Uniform Traffic Control Devices MUTCD (2009) allocates a signal phasing section for the right-turn FYA, which requires a four-section head FYA signal. It supports multiple phases' indications that guide the motorist through permissive, protected, and/or permissive/protected phases. For this dissertation, I investigated three permissive right-turn FYA signal phases in various traffic conditions and signal timing circumstances. The first permissive right-turn FYA signal phase is the tight-turn on impeding through (RTOIT) taking place during the cross-street through traffic movement. The second permissive right-turn FYA signal phase occurs during the opposing left-turn approach movement and so is called the right-turn on impeding left (RTOIL). The third permissive right-turn phase is a right-turn on through green impeded only by the side street pedestrians called the right-turn on adjacent through (RTOAT). I aimed to develop warrants leading to efficient implementation of permissive right-turn FYA signal phases based on microsimulation analysis. I developed multinomial logit models to establish a decision support system that predicts the efficiency attributes of the permissive right-turn FYA signal phases.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2019
Semester
Spring
Advisor
Radwan, Ahmed
Degree
Doctor of Philosophy (Ph.D.)
College
College of Engineering and Computer Science
Department
Civil, Environmental, and Construction Engineering
Degree Program
Civil Engineering
Format
application/pdf
Identifier
CFE0007883
URL
http://purl.fcla.edu/fcla/etd/CFE0007883
Language
English
Release Date
November 2020
Length of Campus-only Access
1 year
Access Status
Doctoral Dissertation (Open Access)
STARS Citation
Alfawzan, Mohammed, "Warrants for Right-Turn Flashing Yellow Arrow Signal Phases" (2019). Electronic Theses and Dissertations. 6771.
https://stars.library.ucf.edu/etd/6771