Abstract

Since their invention in 1960, lasers have revolutionized modern technology, and tremendous amounts of innovation and development has gone into advancing their properties and efficiencies. This dissertation reports on further innovations by presenting novel solid state laser systems based on the volume Bragg gratings (VBGs) and the newly developed holographic phase mask (HPMs) for brightness enhancement, dual wavelength operation, and mode conversion. First, a new optical element was created by pairing the HPM with two surface gratings creating an achromatic holographic phase mask. This new optical device successfully performed transverse mode conversion of multiple narrow line laser sources operating from 488 to 1550 nm and a broadband mode locked femtosecond source with no angular tuning. Also, two types of HPMs were tested on high power Yb fiber lasers to demonstrate high energy mode conversion. Secondly, the effects of implementing VBGs for brightness enhancement of passively Q-switched systems with large Fresnel numbers was investigated. Implementing VBGs for angular mode selection allowed for higher pulse energies to be extracted without sacrificing brightness and pulse duration. This technique could potentially be applied to construct compact cavities with 1 cm diameter beams and nearly diffraction limited beam quality. Lastly, a spectral beam combining approach was applied to create Tm3+ and Yb3+ based narrowband dual-wavelength pump sources for terahertz generation, using VBGs as frequency selectors and beam combiners. Comparison of pulse duration and synchronization was done between passive and active Q-switching operation. An experimental set up for THz generation and detection using high sensitive detectors was created, and modeling of terahertz conversion efficiencies were done

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2019

Semester

Fall

Advisor

Glebov, Leonid

Degree

Doctor of Philosophy (Ph.D.)

College

College of Optics and Photonics

Department

Optics and Photonics

Degree Program

Optics and Photonics

Format

application/pdf

Identifier

CFE0007812

URL

http://purl.fcla.edu/fcla/etd/CFE0007812

Language

English

Release Date

December 2020

Length of Campus-only Access

1 year

Access Status

Doctoral Dissertation (Campus-only Access)

Share

COinS