Abstract
Quantifying the structural dynamics of complex media is challenging because of the multiple temporal and spatial scales involved. Thanks to the ability to retrieve collective dynamics noninvasively, light scattering-based approaches are often the methods of choice. This dissertation discusses specific features of dynamic light scattering that utilizes spatio-temporal coherence gating. It is demonstrated that this optical fiber-based approach can operate over a large range of optical regimes and it has a number of unique capabilities such as an effective isolation of single scattering, a large sensitivity, and a high collection efficiency. Moreover, the approach also provides means for proper ensemble averaging, which is necessary when characterizing multi-scale dynamics. A number of applications are reviewed in which these specific characteristics permit recovering dynamic information of complex fluids beyond the capabilities of traditional light scattering-based techniques.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2019
Semester
Fall
Advisor
Dogariu, Aristide
Degree
Doctor of Philosophy (Ph.D.)
College
College of Optics and Photonics
Department
Optics and Photonics
Degree Program
Optics and Photonics
Format
application/pdf
Identifier
CFE0008277; DP0023648
Language
English
Release Date
June 2020
Length of Campus-only Access
None
Access Status
Doctoral Dissertation (Open Access)
STARS Citation
Guzman Sepulveda, Jose Rafael, "Optical Sensing of Structural Dynamics in Complex Media" (2019). Electronic Theses and Dissertations. 6872.
https://stars.library.ucf.edu/etd/6872