Abstract

As the field of affect recognition has progressed, many researchers have shifted from having unimodal approaches to multimodal ones. In particular, the trends in paralinguistic speech affect recognition domain have been to integrate other modalities such as facial expression, body posture, gait, and linguistic speech. Our work focuses on integrating contextual knowledge into paralinguistic speech affect recognition. We hypothesize that a framework to recognize affect through paralinguistic features of speech can improve its performance by integrating relevant contextual knowledge. This dissertation describes our research to integrate contextual knowledge into the paralinguistic affect recognition process from acoustic features of speech. We conceived, built, and tested a two-phased system called the Context-Based Paralinguistic Affect Recognition System (CxBPARS). The first phase of this system is context-free and uses the AdaBoost classifier that applies data on the acoustic pitch, jitter, shimmer, Harmonics-to-Noise Ratio (HNR), and the Noise-to-Harmonics Ratio (NHR) to make an initial judgment about the emotion most likely exhibited by the human elicitor. The second phase then adds context modeling to improve upon the context-free classifications from phase I. CxBPARS was inspired by a human subject study performed as part of this work where test subjects were asked to classify an elicitor's emotion strictly from paralinguistic sounds, and then subsequently provided with contextual information to improve their selections. CxBPARS was rigorously tested and found to, at the worst case, improve the success rate from the state-of-the-art's 42% to 53%.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2019

Semester

Fall

Advisor

Gonzalez, Avelino

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Electrical and Computer Engineering

Degree Program

Computer Engineering

Format

application/pdf

Identifier

CFE0007836

URL

http://purl.fcla.edu/fcla/etd/CFE0007836

Language

English

Release Date

December 2022

Length of Campus-only Access

3 years

Access Status

Doctoral Dissertation (Open Access)

Share

COinS