Abstract
Recent years have witnessed intense research activities to effectively control the flow of photons using various classes of optical structures such as photonic crystals and metamaterials. In this regard, optics has benefited from concepts in condensed matter and solid-state physics, where similar problems concerning electronic wavefunctions arise. An important example of such correspondence is associated with the photon dynamics under the effect of an artificial magnetic field. This is especially important since photons, as neutral bosons, do not inherently interact with magnetic fields. One way to mitigate this issue is to exploit magneto-optical materials. However, as is well known, using such materials comes with several issues in terms of optical losses and fabrication challenges. Therefore, clearly of interest would be to devise certain schemes, which employ conventional dielectric materials, and yet provide an artificial "magnetic field" e.g. through geometric phases imprinted in the photonic wave amplitudes. Here, we utilize such schemes to observe various optical wave phenomena arising from the associated artificial magnetism. First, we show that light propagation dynamics in a twisted multicore optical fiber is governed by the Schrödinger equation in the presence of a magnetic potential. Using this, we experimentally observe Aharonov-Bohm suppression of optical tunneling in these structures. Moreover, we use notions from topological insulators to demonstrate the first dielectric-based topological lasers both in 1- and 2-dimensional lattices of microring resonators. Our measurements show that such laser arrays exhibit significant improvement in terms of robustness against defects and disorder, as well as higher slope efficiencies as compared to conventional laser arrays. Finally, we show both theoretically and experimentally, that the cooperative interplay among vectorial electromagnetic modes in coupled metallic nanolasers can be utilized as a means to emulate the classical XY Hamiltonian. In particular, we discern two phases in these systems, akin to those associated with ferromagnetic (FM) and antiferromagnetic (AF) materials.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2019
Semester
Summer
Advisor
Christodoulides, Demetrios
Degree
Doctor of Philosophy (Ph.D.)
College
College of Optics and Photonics
Department
Optics and Photonics
Degree Program
Optics and Photonics
Format
application/pdf
Identifier
CFE0008098; DP0023237
URL
https://purls.library.ucf.edu/go/DP0023237
Language
English
Release Date
February 2020
Length of Campus-only Access
None
Access Status
Doctoral Dissertation (Open Access)
STARS Citation
Parto, Midya, "Artificial Magnetism and Topological Phenomena in Optics" (2019). Electronic Theses and Dissertations. 6830.
https://stars.library.ucf.edu/etd/6830