Abstract

For critical systems, timely recognition of an anomalous condition immediately starts the evaluation process. For complex systems, isolating the fault to a component or subsystem results in corrective action sooner so that undesired consequences may be minimized. There are many unique anomaly detection and fault isolation capabilities available with innovative techniques to quickly discover an issue and identify the underlying problems. This research develops a framework to aid in the selection of appropriate anomaly detection and fault isolation technology to augment a given system. To optimize this process, the framework employs a model based systems engineering approach. Specifically, a SysML model is generated that enables a system-level evaluation of alternative detection and isolation techniques, and subsequently identifies the preferable application(s) from these technologies A case study is conducted on a cryogenic liquid hydrogen system that was used to fuel the Space Shuttles at the Kennedy Space Center, Florida (and will be used to fuel the next generation Space Launch System rocket). This system is operated remotely and supports time-critical and highly hazardous operations making it a good candidate to augment with this technology. As the process depicted by the framework down-selects to potential applications for consideration, these too are tested in their ability to achieve required goals.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2019

Semester

Spring

Advisor

Rabelo, Luis

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Industrial Engineering and Management Systems

Degree Program

Industrial Engineering

Format

application/pdf

Identifier

CFE0008112; DP0023251

URL

https://purls.library.ucf.edu/go/DP0023251

Language

English

Release Date

May 2020

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Share

COinS