Abstract
The inherent behavioral variability exhibited by stochastic systems makes it a challenging task for human experts to manually analyze them. Computational modeling of such systems helps in investigating and predicting the behaviors of their underlying processes but at the same time introduces the presence of several unknown parameters. A key challenge faced in this scenario is to determine the values of these unknown parameters against known behavioral specifications. The solutions that have been presented so far estimate the parameters of a given model against a single specification whereas a correct model is expected to satisfy all the behavioral specifications when instantiated with a single set of parameter values. The main contribution of this thesis is computing a quantitative tightness metric describing how well a given stochastic model satisfies a known probabilistic behavioral specification and later employing that metric to guide a search algorithm in order to estimate all the unknown parameters present in the model such that the model satisfies multiple probabilistic temporal logic behavioral specifications simultaneously; thus, generating a single set of parameter values against multiple specifications. The first step of the presented solution uses a larger mean hypothesis test based statistical model checking technique to estimate the unknown parameters of the given stochastic model against a single probabilistic temporal logic behavioral specification and the second phase of this work extends it by using a multiple hypothesis testing based statistical model checking technique to estimate the parameters against multiple probabilistic behavioral specifications simultaneously. The benchmarks studied, analyzed and experimented on in this study are stochastic rule-based computational models of two biochemical receptors, FceRI and T-cell. Experimental results demonstrate successful parameter estimation of all the unknown parameters present in the two models against three probabilistic temporal logic behavioral specifications each.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2019
Semester
Summer
Advisor
Jha, Sumit Kumar
Degree
Doctor of Philosophy (Ph.D.)
College
College of Engineering and Computer Science
Department
Computer Science
Degree Program
Computer Science
Format
application/pdf
Identifier
CFE0008091; DP0023267
URL
https://purls.library.ucf.edu/go/DP0023267
Language
English
Release Date
2-15-2021
Length of Campus-only Access
1 year
Access Status
Doctoral Dissertation (Open Access)
STARS Citation
Khalid, Arfeen, "Parameter Estimation of Stochastic Models Against Probabilistic Temporal Logic Behavioral Specifications" (2019). Electronic Theses and Dissertations. 6840.
https://stars.library.ucf.edu/etd/6840