Keywords
Evolvable hardware; genetic algorithms; analog; continuous; energy
Abstract
Energy and performance improvements of continuous-time analog-based computation for selected applications offer an avenue to continue improving the computational ability of tomorrow*s electronic devices at current technology scaling limits. However, analog computation is plagued by the difficulty of designing complex computational circuits, programmability, as well as the inherent lack of accuracy and precision when compared to digital implementations. In this thesis, evolutionary algorithm-based techniques are utilized within a reconfigurable analog fabric to realize an automated method of designing analog-based computational circuits while adapting the functional range to improve performance. A Self-Scaling Genetic Algorithm is proposed to adapt solutions to computationally-tractable ranges in hardware-constrained analog reconfigurable fabrics. It operates by utilizing a Particle Swarm Optimization (PSO) algorithm that operates synergistically with a Genetic Algorithm (GA) to adaptively scale and translate the functional range of computational circuits composed of high-level or low-level Computational Analog Elements to improve performance and realize functionality otherwise unobtainable on the intrinsic platform. The technique is demonstrated by evolving square, square-root, cube, and cube-root analog computational circuits on the Cypress PSoC-5LP System-on-Chip. Results indicate that the Self-Scaling Genetic Algorithm improves our error metric on average 7.18-fold, up to 12.92-fold for computational circuits that produce outputs beyond device range. Results were also favorable compared to previous works, which utilized extrinsic evolution of circuits with much greater complexity than was possible on the PSoC-5LP.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2015
Semester
Summer
Advisor
DeMara, Ronald
Degree
Master of Science in Electrical Engineering (M.S.E.E.)
College
College of Engineering and Computer Science
Department
Electrical Engineering and Computing
Degree Program
Engineering and Computer Science
Format
application/pdf
Identifier
CFE0005866
URL
http://purl.fcla.edu/fcla/etd/CFE0005866
Language
English
Release Date
August 2015
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
Subjects
Dissertations, Academic -- Engineering and Computer Science; Engineering and Computer Science -- Dissertations, Academic
STARS Citation
Pyle, Steven, "Self-Scaling Evolution of Analog Computation Circuits" (2015). Electronic Theses and Dissertations. 710.
https://stars.library.ucf.edu/etd/710