Keywords

Mathematical modeling of smallpox, Computer simulation of smallpox

Abstract

In this work, two differential equation models for smallpox are numerically solved to find the optimal intervention policy. In each model we look for the range of values of the parameters that give rise to the worst case scenarios. Since the scale of an epidemic is determined by the number of people infected, and eventually dead, as a result of infection, we attempt to quantify the scale of the epidemic and recommend the optimum intervention policy. In the first case study, we mimic a densely populated city with comparatively big tourist population, and heavily used mass transportation system. A mathematical model for the transmission of smallpox is formulated, and numerically solved. In the second case study, we incorporate five different stages of infection: (1) susceptible (2) infected but asymptomatic, non infectious, and vaccine-sensitive; (3) infected but asymptomatic, noninfectious, and vaccine-in-sensitive; (4) infected but asymptomatic, and infectious; and (5) symptomatic and isolated. Exponential probability distribution is used for modeling this case. We compare outcomes of mass vaccination and trace vaccination on the final size of the epidemic.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2006

Semester

Summer

Advisor

Rollins, David

Degree

Master of Science (M.S.)

College

College of Sciences

Department

Mathematics

Degree Program

Mathematics

Format

application/pdf

Identifier

CFE0001193

URL

http://purl.fcla.edu/fcla/etd/CFE0001193

Language

English

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Included in

Mathematics Commons

Share

COinS