Keywords

Microwave Radiometer, HIRad, Remote Sensing, SFMR, Hurricane Retrievals, Ocean Rain

Abstract

This thesis presents the development and validation of the Hurricane Imaging Retrieval Algorithm (HIRA) for the measurement of oceanic surface wind speed and rain rate in hurricanes. The HIRA is designed to process airborne microwave brightness temperatures from the NOAA, Stepped Frequency Microwave Radiometer (SFMR), which routinely collects data during NOAA hurricane hunter aircraft flights. SFMR measures wind speeds and rain rates at nadir only, but HIRA will soon be integrated with an improved surface wind speed model for expanded utilization with next generation microwave hurricane imagers, such as the Hurricane Imaging Radiometer (HIRad). HIRad will expand the nadir only measurements of SFMR to allow the measurement of hurricane surface winds and rain over a wide swath Results for the validation of HIRA retrievals are presented using SFMR brightness temperature data for 22 aircraft flights in 5 hurricanes during 2003-2005. Direct comparisons with the standard NOAA SFMR empirical algorithm provided excellent results for wind speeds up to 70 m/s. and rain rates up to 50 mm/hr.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2006

Semester

Summer

Advisor

Jones, W. Linwood

Degree

Master of Science in Electrical Engineering (M.S.E.E.)

College

College of Engineering and Computer Science

Department

Electrical Engineering and Computer Science

Degree Program

Electrical Engineering

Format

application/pdf

Identifier

CFE0001313

URL

http://purl.fcla.edu/fcla/etd/CFE0001313

Language

English

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Share

COinS