Abstract
Machine learning (ML) has been flourishing in various fields, including image recognition, natural language processing, and even protein structure analysis. In recent years, it is getting attention in the optoelectronics field. Researchers not only use ML tools to help boost the research of optoelectronic devices but also try to invent new optoelectronic devices to build computers to help the application of ML in real life. In this dissertation, both directions are explored, including using ML to help design high-performing perovskite solar cells (PSCs) and synthesizing new materials to build new optoelectronic synapses for future neuromorphic computers for ML applications. First, ML is used to predict the bandgaps of perovskite materials and performances of PSCs, which shows that ML benefits the research of optoelectronic devices. Several promising findings are discussed based on ML's predictions to help guide the design of high-performing PSCs. Next, new optoelectronic synapses are fabricated, which can act as building blocks for neuromorphic computers. By applying heterogeneous nucleation principles to grow perovskite quantum dots (PQDs) on multi-wall carbon nanotubes (MWCNTs) and Graphene, new materials are synthesized and used to fabricate optoelectronic synapses. The potentiation of the synapses is realized by light pulses, and the depression is accomplished by electrical pulses. Using the properties of the device to do simulations, the ability of the new type of optoelectronic synapses to act as building blocks of optoelectronic neuromorphic computers is demonstrated. Finally, plasmonic OECTs are fabricated using a low-cost method called the nanoimprint method. Using glucose sensing as proof, this new type of OECT devices can significantly enhance the sensitivity of glucose sensing under light illumination. This new type of OECTs could be a new direction for optoelectronic synapses or work as building blocks for the human-machine interface.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2020
Semester
Fall
Advisor
Thomas, Jayan
Degree
Doctor of Philosophy (Ph.D.)
College
College of Optics and Photonics
Department
Optics and Photonics
Degree Program
Optics and Photonics
Format
application/pdf
Identifier
CFE0008780;DP0025511
URL
https://purls.library.ucf.edu/go/DP0025511
Language
English
Release Date
6-15-2026
Length of Campus-only Access
5 years
Access Status
Doctoral Dissertation (Campus-only Access)
STARS Citation
Li, Jinxin, "Machine Learning Inspired Optoelectronic Devices" (2020). Electronic Theses and Dissertations, 2020-2023. 809.
https://stars.library.ucf.edu/etd2020/809
Restricted to the UCF community until 6-15-2026; it will then be open access.