Abstract

Real-time crash risk prediction aims to predict the crash probabilities within a short time period, it is expected to play a crucial role in the advanced traffic management system. However, most of the existing studies only focused on freeways rather than urban arterials because of the complicated traffic environment of the arterials. This thesis proposes a long short-term memory convolutional neural network (LSTM-CNN) to predict the real-time crash risk at arterials. The advantage of this model is it can benefit from both LSTM and CNN. Specifically, LSTM captures the long-term dependency of the data while CNN extracts the time-invariant features. Four urban arterials in Orlando, FL are selected to conduct a case study. Different types of data are utilized to predict the crash risk, including traffic data, signal timing data, and weather data. Various data preparation techniques are applied also. In addition, the synthetic minority over-sampling technique (SMOTE) is used for oversampling the crash cases to address the data imbalance issue. The LSTM-CNN is fine-tuned on the training data and validated on the test data via different metrics. In the end, five other benchmarks models are also developed for model comparison, including Bayesian Logistics Regression, XGBoost, LSTM, CNN, and Sequential LSTM-CNN. Experimental results suggest that the proposed LSTM-CNN outperforms others in terms of Area Under the Curve (AUC) value, sensitivity, and false alarm rate. The findings of this thesis indicate the promising performance of using LSTM-CNN to predict real-time crash risk at arterials.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2020

Semester

Spring

Advisor

Abdel-Aty, Mohamed

Degree

Master of Science (M.S.)

College

College of Engineering and Computer Science

Department

Civil, Environmental, and Construction Engineering

Degree Program

Civil Engineering; Smart Cities Track

Format

application/pdf

Identifier

CFE0007995; DP0023135

URL

https://purls.library.ucf.edu/go/DP0023135

Language

English

Release Date

May 2020

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Share

COinS