Keywords

Hybrid-Microfabrication 3D-Microelectrode-Arrays 3D-Electrogenic-Microphysiological-Systems 6-Well-Interface Flex-Circuit-Board Biocompatibility

Abstract

In this thesis we identify device (3D Microelectrode Arrays – 3D MEAs)/system (commercial electronics interface) issues preventing the scaling up of the world’s first in vitro model of afferent synaptic signaling in the spinal cord and develop a potential solution involving spin cast insulation and micromilled/microdrilled/microsoldered/flex circuit integrated 6-well interface board with connectors for analyzing up to six 3D MEAs simultaneously at one time. These novel advances can scale experimentation in the development of new treatments, pharmacological responses, and other electrophysiological discoveries for neurological disorders. In addition, we report on a multi-material palette towards the microfabrication of the aforementioned 3D Microelectrodes Arrays for integration with a variety of 3D electrogenic Microphysiological Systems (MPS) beyond the afferent synaptic model. The goal of this part of the thesis was to fabricate 3D MEAs with six microelectrodes by utilizing materials such as polycarbonate (PC), polymethyl methacrylate (PMMA), and polysulfone (PS). We created a reliable microfabrication process by combining laser micromachining, laser-induced breakdown spectroscopy (LIBS), 3D needle assembly, SU-8 coatings and micromilling/ microdrilling techniques. The 3D MEAs demonstrate impedance characteristics similar to commercial MEAs. Additionally, all material combinations showed outstanding transparency and biocompatibility for applicability in 3D neuronal and cardiac studies.

Completion Date

2024

Semester

Summer

Committee Chair

Rajaraman, Swaminathan

Degree

Master of Science (M.S.)

College

College of Graduate Studies

Department

Nanoscience and Technology Center

Degree Program

Nanotechnology

Format

application/pdf

Identifier

DP0028487

URL

https://purls.library.ucf.edu/go/DP0028487

Language

English

Release Date

8-15-2025

Length of Campus-only Access

1 year

Access Status

Masters Thesis (Campus-only Access)

Campus Location

Orlando (Main) Campus

Accessibility Status

Meets minimum standards for ETDs/HUTs

Restricted to the UCF community until 8-15-2025; it will then be open access.

Share

COinS