Title
Computing a diameter-constrained minimum spanning tree in parallel
Keywords
DISTRIBUTED MUTUAL EXCLUSION; ALGORITHM; Computer Science, Theory & Methods
Abstract
A minimum spanning tree (MST) with a small diameter is required in numerous practical situations. It is needed, for example, in distributed mutual exclusion algorithms in order to minimize the number of messages communicated among processors per critical section. The Diameter-Constrained MST (DCMST) problem can be stated as follows: given an undirected, edge-weighted graph G with n nodes and a positive integer k, find a spanning tree with the smallest weight among all spanning trees of G which contain no path with more than k edges. This problem is known to be NP-complete, for all values of k; 4 less than or equal to k less than or equal to (n - 2). Therefore, one has to depend on heuristics and live with approximate solutions. In this paper, we explore two heuristics for the DCMST problem: First, we present a one-time-tree-construction algorithm that constructs a DCMST in a modified greedy fashion, employing a heuristic for selecting edges to be added to the tree at each stage of the tree construction. This algorithm is fast and easily parallelizable. It is particularly suited when the specified values for k are small-independent of n. The second algorithm starts with an unconstrained MST and iteratively refines it by replacing edges, one by one, in long paths until there is no path left with more than k edges. This heuristic was found to be better suited for larger values of k. We discuss convergence, relative merits, and parallel implementation of these heuristics on the MasPar MP-1- a massively parallel SIMD machine with 8192 processors. Our extensive empirical study shows that the two heuristics produce good solutions for a wide variety of inputs.
Journal Title
Algorithms and Complexity
Volume
1767
Publication Date
1-1-2000
Document Type
Article
Language
English
First Page
17
Last Page
31
WOS Identifier
ISSN
0302-9743; 3-540-67159-5
Recommended Citation
"Computing a diameter-constrained minimum spanning tree in parallel" (2000). Faculty Bibliography 2000s. 2492.
https://stars.library.ucf.edu/facultybib2000/2492
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu