Title
Combined chlorine dissipation: Pipe material, water quality, and hydraulic effects
Abbreviated Journal Title
J. Am. Water Work Assoc.
Keywords
MONOCHLORAMINE; PROPAGATION; NETWORKS; SYSTEM; Engineering, Civil; Water Resources
Abstract
Effects of water chemistry, temperature, pipe material, and hydraulic conditions on total chlorine dissipation were investigated using laboratory- and pilot-scale experiments. Chlorine demand in the bulk phase depends on water chemistry, and the bulk-phase dissipation constant (k(b)) generally increased with increasing dissolved organic carbon. A 10 C rise in temperature resulted in a threefold increase in kb. Pipe material significantly influenced total chlorine dissipation rates in the following order: galvanized iron > unlined cast iron > polyvinyl chloride (PVC) > lined cast iron. Total chlorine consumption predominantly occurred at the wall surface in small-diameter unlined cast-iron and galvanized-iron pipes and predominantly in the bulk phase for lined cast-iron and PVC pipes. The mass transfer coefficient (k(f)) and the overall dissipation constant (K) increased with increasing Reynolds numbers. The wall constant (k(W)) is an intrinsic pipe property and is therefore a true constant; an increase in k(W) with increasing Reynolds number was observed. However, this may be attributed to dynamic changes in particulate surface area associated with release of corrosion products from the pipe surface.
Journal Title
Journal American Water Works Association
Volume
99
Issue/Number
10
Publication Date
1-1-2007
Document Type
Article
Language
English
First Page
96
Last Page
106
WOS Identifier
ISSN
0003-150X
Recommended Citation
"Combined chlorine dissipation: Pipe material, water quality, and hydraulic effects" (2007). Faculty Bibliography 2000s. 7455.
https://stars.library.ucf.edu/facultybib2000/7455
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu