Abstract

Pressure gradient confinement effects are experimentally investigated within a cavity combustor to analyze the flame interactions of premixed, cavity stabilized, flames in a high-speed combustor. Pressure gradient confinement effects are generated in a dual mode ramjet-scramjet (DMSR) by varying the wall geometry to form converging, diverging, and nominal configurations. The velocity field and flame position are captured temporally using simultaneous high-speed particle image velocimetry (PIV) and CH chemiluminescence. The evolution of the flow field and flame structure are analyzed, and the high temporal resolution of these measurements allows for the characterization of turbulence-flame interactions. Consideration of the combustion mode and inlet conditions, such as the inflow velocity and turbulence, are vital in studying flame-vortex interaction dynamics and its effect on the flame stabilization process and is essential in ensuring efficient, complete combustion. The results from the experiment will provide a greater understanding of how flame-vorticity interactions and pressure gradient confinement effects play a key role in the flame-stabilization and combustion process.

Thesis Completion

2022

Semester

Fall

Thesis Chair/Advisor

Ahmed, Kareem

Degree

Bachelor of Science in Mechanical Engineering (B.S.M.E.)

College

College of Engineering and Computer Science

Department

Mechanical and Aerospace Engineering

Degree Program

Mechanical Engineering

Language

English

Access Status

Open Access

Release Date

12-15-2022

Share

COinS