Abstract

Infections caused by the organism Staphylococcus aureus are one of the most common causes for community-associated and healthcare-acquired infections (HAI). Isolates of this bacterium found within the healthcare setting often demonstrate a higher prevalence of antibiotic resistance making these infections difficult to treat. Historically, considerable focus has been placed on methicillin-resistant S. aureus (MRSA), which are strains resistant to β-lactam antibiotics like penicillin, oxacillin and cephalosporins; however, methicillin-sensitive (MSSA) strains may also possess resistance to several first-line antibiotics. Resistance to antibiotics can be acquired through horizontal gene transfer (HGT) by means of mobile genetic elements or by random DNA mutations as product of DNA replication. Bacteria have elucidated these mechanisms to defend themselves from antibiotics and one cause that promotes resistance is the inappropriate use or prescription of antibiotics to treat infections, i.e., using antibiotics to treat COVID-19. Through the SARS-CoV-2 pandemic, the CDC reported an increased prescription for antibiotics, similarly, other previous studies reported that antibiotics were part of treatment plant in some patients with COVID-19. The aim of this thesis is to study the differences in antibiotic resistance profiles of Staphylococcus aureus strains collected from carriage and disease samples at Nemours Children's Hospital in Orlando, FL from 2019-2022. The focus will be on comparing the susceptibility of methicillin-sensitive and methicillin-resistant strains to various antibiotics. The results will provide clinicians with valuable information that will allow for better treatments and consideration for antibiotic use when creating a treatment plan for patients.

Thesis Completion

2023

Semester

Spring

Thesis Chair/Advisor

Azarian, Taj

Degree

Bachelor of Science (B.S.)

College

College of Medicine

Department

Burnett School of Biomedical Sciences

Degree Program

Biomedical Sciences; Neuroscience Track

Language

English

Access Status

Campus Access

Length of Campus-only Access

1 year

Release Date

5-15-2024

Share

COinS