Abstract

3D bioprinting is an emerging field with the potential to reform the process of organ transplantation. The ability to 3D print new organs and tissues would supplement the organ donor shortage and decrease the risk associated with organ rejection. One of the current areas of research focuses on printing cells using hydrogels composed of methacrylated compounds as a scaffolding. One of the chemical means of crosslinking the hydrogels is using the photoinitiator lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) to crosslink with light. The 3D bioprinter in the lab currently has an attachment for a 365nm lamp, however this is cytotoxic to cells. A 405nm laser was designed to mount on the hot tool of the BioAssemblyBot by Advanced Solutions and flash at a specific frequency when sent a signal from the bioprinter. This tool was then tested to determine effective flash frequencies for crosslinking hydrogels.

Thesis Completion

2023

Semester

Spring

Thesis Chair/Advisor

Kean, Thomas

Degree

Bachelor of Science (B.S.)

College

College of Medicine

Department

Burnett School of Biomedical Sciences

Degree Program

Biomedical Science

Language

English

Access Status

Campus Access

Length of Campus-only Access

1 year

Release Date

5-15-2024

Share

COinS