Abstract
The leading-edge tubercle is a type of airfoil modification that inspired by the humpback whale. It was found that the aerodynamic performance of the wing would increase compared to the wing without tubercles. In the past several years, a lot of numerical and experimental studies have been accomplished to explore this leading-edge modification. Besides the aerodynamic performance change, this research explores the aeroacoustics behavior of airfoils with leading-edge tubercles. A numerical study based on Computational Fluid Dynamics (CFD) is established, and simulations using Star CCM are accomplished based on reasonable set-ups. The airfoil chosen to create the wing is NACA 4412 which is an asymmetric airfoil. Two different tubercle wavelengths were used: 20 mm and 25 mm. The baseline airfoil is the wing that made of the same airfoil but without any modifications. For wings with leading-edge tubercles, the wavelength of the tubercles is the only changing parameter. It was found that the wings with leading-edge tubercles can reduce the noise generation, and the best noise reduction is achieved for a value of 2.525 dB (Decibel) at Point Receiver 10 for the wing that has 25 mm wavelength leading-edge tubercles. However, the wavelength of tubercles does not affect the aeroacoustics performance in an obvious way.
Thesis Completion
2023
Semester
Spring
Thesis Chair/Advisor
Kinzel, Michael
Degree
Bachelor Science in Aerospace Engineering (B.S.A.E.)
College
College of Engineering and Computer Science
Department
Mechanical and Aerospace Engineering
Degree Program
Aerospace Engineering
Language
English
Access Status
Open Access
Release Date
5-15-2023
Recommended Citation
Zhang, Youjie, "The Numerical Study of Aeroacoustics Performance of Wings with Different Wavelength Leading-Edge Tubercles" (2023). Honors Undergraduate Theses. 1437.
https://stars.library.ucf.edu/honorstheses/1437