Abstract

The power system is a complex entity with unique plant designs, control systems, and market strategies. For many years, engineers have developed advanced technology to keep the grid efficient and balanced. With the rise of renewable sources, some new technology and programs must be developed to keep the quality of the power system. Unlike traditional power plants, renewable energy is highly dependent on environmental factors, such as sunlight and wind, meaning the generation depends on an unpredictable source of fuel. As the grid moves to more sustainable sources, the power market faces a growing challenge of less control over the forecasted supply offered by each renewable plant. This uncertainty creates a high need to develop alternative methods to ensure the power supply always meets demand. With diminishing control over our generation, one potential solution has been to explore demand response initiatives. Demand response focuses on the engagement of consumers to reduce the electricity demand, facilitating sub-hourly efforts on the supply side. This paper will analyze the effect of demand response efforts on the participants and provide insights into potential benefits and challenges associated with implementing demand response strategies. The findings of the studies will contribute to a better understanding on the compensation structure of current Direct Load Control programs and the level of participation required for it to be effectively integrated into the power system, promoting a more reliable and sustainable future.

Thesis Completion

2023

Semester

Fall

Thesis Chair/Advisor

Sun, Qun Zhou

Degree

Bachelor of Science in Electrical Engineering (B.S.E.E.)

College

College of Engineering and Computer Science

Department

Electrical and Computer Engineering

Degree Program

Electrical Engineering

Language

English

Access Status

Open Access

Release Date

12-15-2023

Share

COinS