Abstract

Mulan is an E3 ubiquitin ligase embedded in the outer mitochondria membrane. Mulan’s participation in the ubiquitination process is conducted through its cytosol exposed RING finger domain, and its ability to modulate protein ubiquitination makes it a key player in mitochondrial and cellular homeostasis. Mulan is known to be involved in mitochondrial fission, fusion, mitochondrial stress, apoptosis, and Parkin-independent mitophagy. Dysregulation of Mulan in mice has been shown to correlate with human neurodegenerative disorders and heart disease. Accumulation of Mulan is predicted to be responsible for the motor neuron degeneration 2 (mnd2) phenotype in mutant mice through the deregulation of the Mulan-dependent pathway of mitophagy. The purpose of this study was to utilize both a yeast two-hybrid screen as well as an in vitro profiling assay to characterize interactions between Mulan and potential E2 conjugating enzymes. Through these studies, Ube2D1, Ube2D2, and Ube2D3 were identified as strong interactors with the Mulan-RING domain. The tissue specific expression and protein levels of these E2 conjugating enzymes was further investigated in mouse tissues by SDS-PAGE and Western blot analysis. They all had similar patterns of expression and were present in brain, heart, kidney, and liver tissues, with the highest level seen in the brain. This data demonstrates that Mulan has a primary function in the brain and it suggests that Mulan’s deregulation might be involved in the development and progression of neurodegeneration.

Thesis Completion

2018

Semester

Spring

Thesis Chair/Advisor

Zervos, Antonis S.

Degree

Bachelor of Science (B.S.)

College

College of Medicine

Department

Burnett School of Biomedical Sciences

Degree Program

Biomedical Sciences

Location

Orlando (Main) Campus

Language

English

Access Status

Open Access

Length of Campus-only Access

1 year

Release Date

11-1-2019

Share

COinS