Abstract
Using a novel, adipose-liver, two-organ, human-on-a-chip system, the metabolic disease non-alcoholic fatty liver disease was modeled. This model was then used to test the effects of the gut microbiome on NAFLD progression. Two products of the gut microbiome, Trimethylamine-n-oxide and butyrate, were selected as representatives of potentially harmful and potentially beneficial compounds. A dose response, adipocyte and hepatocyte monocultures controls, and HoaC systems were run for 14 days. Through this experimentation, it was found that a dysbiosis of the gut microbiome could be influencing NAFLD progression. Additionally, further development and discovery regarding adipose-liver systems was added to the ongoing conversation of HoaC systems and their usages.
Thesis Completion
2020
Semester
Spring
Thesis Chair/Advisor
Hickman, James J.
Degree
Bachelor of Science (B.S.)
College
College of Medicine
Department
Burnett School of Biomedical Sciences
Degree Program
Biomedical Sciences
Language
English
Access Status
Open Access
Length of Campus-only Access
1 year
Release Date
5-1-2021
Recommended Citation
Boone, Rachel H., "Non-Alcoholic Fatty Liver Disease and the Gut Microbiome: The Effects of Gut Microbial Metabolites on NAFLD Progression in a 2-Organ Human-on-a-Chip Model" (2020). Honors Undergraduate Theses. 678.
https://stars.library.ucf.edu/honorstheses/678