Abstract

Jet-in-crossflow is an interaction between a fuel jet and air crossflow commonly found in jet engines. The crossflow is used to break up or atomize the fuel jet for downstream combustion. This interaction between fluids while at low speeds, is predictable, varies greatly at higher speeds. This investigation seeks to (1) create a mechanism for jet-in-crossflow, using mechanical pintles, that is independent of velocity to help increase the predictability and reliability of jet engines and (2) identify key design parameters that will lead to flow independence. Parameters investigated in this experiment include pintle height, angle, and percent of pintle coverage into the jet orifice. Pintles that covered 100 percent of the jet showed a strong deviation from the traditional interaction with no pintle. Relationships were also found between the angle, height, and penetration depth although none as ubiquitous as the jet coverage.

Thesis Completion

2021

Semester

Spring

Thesis Chair/Advisor

Ahmed, Kareem

Degree

Bachelor of Science in Mechanical Engineering (B.S.M.E.)

College

College of Engineering and Computer Science

Department

Mechanical and Aerospace Engineering

Degree Program

Mechanical Engineering

Language

English

Access Status

Open Access

Release Date

5-1-2021

Share

COinS