Abstract
Osteoarthritis is a prevalent disease that affects the articular cartilage of the joints. Millions of people suffer worldwide and it is a major cause of disability in the United States. Current research for treatments of osteoarthritis are studying tissue-engineered cartilage in vitro generated by articular chondrocytes. A challenge faced in vitro for cartilage tissue engineering is the failure of chondrocytes to produce adequate expression of type II collagen. Surprisingly, the media commonly used in vitro lacks 14 vitamins and minerals present in the physiological environment of chondrocytes. Therefore, studying the interactions between micronutrients and chondrocytes may help in potentially increasing the amount of type II collagen expressed by these cells. This project studied the combinatorial effects of vitamins and minerals in defined chondrogenic media on type II collagen expression. Linolenic acid was determined to have predominantly negative effects on chondrogenesis and Vitamin B7 to have beneficial effects. Multiple vitamins and minerals displayed significant interactions, both positive and negative.
Thesis Completion
2021
Semester
Spring
Thesis Chair/Advisor
Kean, Thomas
Co-Chair
Altomare, Deborah
Degree
Bachelor of Science (B.S.)
College
College of Medicine
Department
Burnett School of Biomedical Sciences
Degree Program
Biomedical Sciences
Language
English
Access Status
Open Access
Release Date
5-1-2021
Recommended Citation
Velez Toro, Javier A., "Multifactorial Media Analysis via Design of Experiment for Type II Collagen in Primary Rabbit Chondrocytes" (2021). Honors Undergraduate Theses. 981.
https://stars.library.ucf.edu/honorstheses/981