Abstract

Viscoplasticity models allow for the prediction of the inelastic behavior of materials, taking into account the rate-dependence. In order to model the response under non-isothermal conditions experienced by many components, such as those in turbomachinery, however, it is necessary to incorporate temperature-dependence. Additionally, for materials subjected to thermal shock, temperature rate-dependence is also important. The purpose of this research is to develop a method of determining Chaboche viscoplasticity parameters that allows for consistent behavior with changing temperature. A quartet of candidate materials, 304 stainless steel, IN617, DS GTD-111, and Ti6242S, were chosen for their applications in turbomachinery, such as gas turbines, nuclear, and aerospace applications. The focus of this research is geared towards establishing the temperature-dependence of the constants used in the model in order to obtain more accurate modeling of non-isothermal fatigue loadings than those achieved through linear interpolation of constants at several temperatures. The goal is to be able to more accurately predict the deformation behavior of components subjected to cyclic temperature and mechanical loadings which will ultimately allow for more accurate life prediction. The effects of orientation in directionally solidified (DS) materials is also examined in order to gain insight as to the expected behavior of parameters with changing orientation.

Notes

If this is your Honors thesis, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Thesis Completion

2015

Semester

Spring

Advisor

Gordon, Ali P.

Degree

Bachelor of Science in Mechanical Engineering (B.S.M.E.)

College

College of Engineering and Computer Science

Department

Mechanical and Aerospace Engineering

Degree Program

Mechanical Engineering

Subjects

Dissertations, Academic -- Engineering and Computer Science; Engineering and Computer Science -- Dissertations, Academic

Format

PDF

Identifier

CFH0004760

Language

English

Access Status

Open Access

Length of Campus-only Access

None

Document Type

Honors in the Major Thesis

Share

COinS