Title

The Utility Of Bayesian Predictive Probabilities For Interim Monitoring Of Clinical Trials

Abstract

Background Bayesian predictive probabilities can be used for interim monitoring of clinical trials to estimate the probability of observing a statistically significant treatment effect if the trial were to continue to its predefined maximum sample size. Purpose We explore settings in which Bayesian predictive probabilities are advantageous for interim monitoring compared to Bayesian posterior probabilities, p-values, conditional power, or group sequential methods. Results For interim analyses that address prediction hypotheses, such as futility monitoring and efficacy monitoring with lagged outcomes, only predictive probabilities properly account for the amount of data remaining to be observed in a clinical trial and have the flexibility to incorporate additional information via auxiliary variables. Limitations Computational burdens limit the feasibility of predictive probabilities in many clinical trial settings. The specification of prior distributions brings additional challenges for regulatory approval. Conclusions The use of Bayesian predictive probabilities enables the choice of logical interim stopping rules that closely align with the clinical decision-making process. © 2014 The Author(s).

Publication Date

1-1-2014

Publication Title

Clinical Trials

Volume

11

Issue

4

Number of Pages

485-493

Document Type

Article; Proceedings Paper

Personal Identifier

scopus

DOI Link

https://doi.org/10.1177/1740774514531352

Socpus ID

84906098710 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/84906098710

This document is currently not available here.

Share

COinS