Keywords

EBIC, surface recombination velocity

Abstract

This dissertation will investigate electron beam induced current (EBIC) for determining semiconductor material and device parameters. While previous experimental work on PN junction delineation using EBIC with the scanning electron microscope has resulted in resolution to approximately 10 nm, theoretical study shows the potential use of EBIC for higher resolution (nanometer) PN junction and FET channel length delineation using the transmission electron microscope. Theoretical arguments using computer simulations of electron beam generation volume, collection probability and EBIC were performed and are presented for the purpose of determining EBIC use in a 300 keV transmission electron microscope (TEM) for PN junction depth determination. Measured results indicate that by measuring thin semiconductor samples with high surface recombination velocity and by using a narrow, high-energy electron beam in the STEM mode of a transmission electron microscope, nanometer resolution may be possible. The practical and experimental limits of beam energy and semiconducting material thermal damage will be discussed.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2007

Semester

Fall

Advisor

Malocha, Donald

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Electrical Engineering and Computer Science

Degree Program

Electrical Engineering

Format

application/pdf

Identifier

CFE0001900

URL

http://purl.fcla.edu/fcla/etd/CFE0001900

Language

English

Release Date

December 2007

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Share

COinS